

David Skole Professor of Global Change Science Michigan State University

CLIMATE CHANGE CHALLENGE AND OPPORTUNITY

Indicators of the human influence on the atmosphere during the Industrial era

SYR - FIGURE 2-1 WG1 FIGURE SPM-2

Surface Temperatures : Past - Present - Future

Variations of the Earth's surface temperature for...

SYR - FIGURE 2-3

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

IPCC

Climate change not global warming

- Clearly average continental and global temperature rise is an important feature
- The other feature is CO₂ concentration in the atmosphere
 - Unambiguous
 - Important to agriculture
- CO2 in seawater ocean acidification

Climate change dynamics

- Even global average temperature change by itself is less interesting than dynamics:
 - E.g. winter night time lows
 - E.g. no overwinter pest kills
- Frost free growing season length
- Consider feedback effects
 - E.g. global temperature rises, triggers more cloud formation, stabilizes temp. rise
 - But more clouds less PAR

From dynamics to variability

- A more energized hydrologic cycle and energy budget (even without temp rise)
- Un-seasonable events, variability, extremes

Current concerns

- U.N. Intergovernmental Panel on Climate Change, the earth's temperature rising by 0.13 degrees C every decade for the past fifty years.
- Many climate models project that in this century temperatures in North America will be 2-3 degrees higher at its coasts 5 degrees C higher mid continent

Implications for wheat

- International Maize and Wheat Improvement Center:
 - North America wheat farmers will have to cease production at the southern end of the grain belt
 - but may be able extend cultivation up another 600-700 miles from the current northern limit of production

CIMMYT Study

Some historical context 1858

Longitude

Annual Precipitation

Annual Temperature

Figure 4: Spring Wheat- Winter Wheat Frontier, 1869 and 1929

Figure 7: Corn-Wheat Frontier, 1869 and 1929

Prospects in our time (Easterling)

- There is evidence for the following long-term trends:
 - a) an earlier start (~11 days) of the frost-free season and occurrence of fewer extreme cold days in the northeastern U. S.
 - b) an increase in one-day heavy precipitation (>1") events nationally (by approximately 2-12% across the Corn Belt)
 - c) a pronounced increase in minimum daily temperatures nationally (but no trend in maximum temperatures)
 - d) an increase in the area of the U. S. experiencing extreme wetness (but no change in dryness).

Continued...

- Climate model simulations indicate that most midcontinental locations in the Northern Hemisphere will warm more than the global average and will receive more precipitation than current.
- The trend toward more high-intensity rainfall events is expected to continue.
- However, droughts are likely to become more frequent in these regions, in spite of more rainfall, due to higher ET; soils will eventually dry.
- Growing seasons likely will be extended, but the probability of destructive heat waves will rise.

Continued...CO₂ effects

- Experiments demonstrate the positive effects of rising atmospheric CO2 concentrations on photosynthesis of certain major crops such as soybeans and wheat and on the drought-tolerance of all crops.
- It appears that the CO2 effect is slightly higher under moisture stress than under adequate moisture
- However, experiments are showing that the beneficial effects of CO2 may decline as temperatures rise above crop photosynthetic optima.
- Moreover, these effects are not likely to fully offset stresses of warmer temperatures and drier soils,

Temperate Crop Yields with Warming and CO₂ Effects Synthesized From Existing Modeling Studies

USDA free air experiments

- Increased soil C (slightly)
- Decreased flour protein

Table 2.7 Percent response of leaf photosynthesis, total biomass, grain yield, stomatal conductance, and canopy temperature or evapotranspiration, to a doubling in CO₂ concentration (usually 350 to 700 ppm, but sometimes 330 to 660 ppm). *Responses to increase from ambient to 550 or 570 ppm (FACE) are separately noted.

Сгор	Leaf Photosynthesis	Total Biomass	Grain Yield	Stomatal Conductance	Canopy T, ET		
	% change						
Corn	31*	41.2.3.4	41.2	-345			
Soybean	396	376	386, 347	-406	-98,-12 ^{9,10*}		
Wheat	3511	15-2712	3113	-33 to -4314*	-815,16*		
Rice	3617	3017	3017.18		-1019,27		
Sorghum	920, 21*	322*	820, 022*	-3721*	- 323*		
Cotton	3324	3624	4424	-3624	-825		
Peanut	2726	3626	3026				
Bean	5026	3026	2726				

References: ¹Leakey et al. (2006)*; ²King and Greer (1986); ³Ziska and Bunce (1997); ⁴Maroco et al. (1999); ⁵Leakey et al. (2006)*; ⁶Ainsworth et al. (2002); ⁷Allen and Boote (2000); ⁸Allen et al. (2003); ⁹Jones et al. (1985); ¹⁰Bernacchi et al. (2007)*; ¹¹Long (1991); ¹²Lawlor and Mitchell (2000); ¹³Amthor (2001); ¹⁴Wall et al. (2006)*; ¹⁵Andre and duCloux (1993); ¹⁶Kimball et al. (1999)*; ¹⁷Horie et al. (2000); ¹⁸Baker and Allen (1993a); ¹⁹Baker et al. (1997a); ²⁰Prasad et al. (2006a); ²¹Wall et al. (2001); ²²Ottman et al. (2001)*; ²³Triggs et al. (2004)*; ²⁴K.R. Reddy et al. (1995,1997); ²⁵Reddy et al. (2000); ²⁶Prasad et al. (2003); ²⁷Yoshimoto et al. (2005).

Table 2.6 Percent grain yield and evapotranspiration responses to increased temperature $(1.2^{\circ}C)$, increased CO_2 (380 to 440 ppm), and the net effects of temperature plus increased CO_2 assuming additivity. Current mean air temperature during reproductive growth is shown in parentheses for each crop/region to give starting references, although yield of all the cereal crops declines with a temperature slope that originates below current mean air temperatures during grain filling.

	Grain Yield			Evapotranspiration		
Сгор	Temperature (1.2°C) ¹	CO ₂ (380 to 440 ppm) ²	Temp/CO ₂ Combined Irrigated	Temp (1.2°C) ³	CO ₂ (380 to 440 ppm) ⁴	
			% change			
Corn – Midwest (22.5°C)	-4.0	+1.0	-3.0	+1.8		
Corn – South (26.7°C)	-4.0	+1.0	-3.0	+1.8		
Soybean – Midwest (22.5°C)	+2.5	+7.4	+9.9	+1.8	-2.1	
Soybean – South (26.7°C)	-3.5	+7.4	+3.9	+1.8	-2.1	
Wheat – Plains (19.5°C)	-6.7	+6.8	+0.1	+1.8	-1.4	
Rice – South (26.7°C)	-12.0	+6.4	-5.6	+1.8	-1.7	
Sorghum (full range)	-9.4	+1.0	-8.4	+1.8	-3.9	
Cotton – South (26.7°C)	-5.7	+9.2	+3.5	+1.8	-1.4	
Peanut - South (26.7°C)	-5.4	+6.7	+1.3	+1.8		
Bean – relative to 23°C	-8.6	+6.1	-2.5	+1.8		

Figure 1.6 Simulated U.S. Heat Wave Days and Warm Nights in 2030. The left panel shows the projected change in number of heat wave days (days with maximum temperature higher by at least 5°C (with respect to the climatological norm)). The right panel shows changes in warm nights (percent of times when minimum temperature is above the 90th percentile of the climatological distribution for that day). Both panels show results for IPCC emissions scenario AIB, which would increase the atmospheric concentration of greenhouse gases to about 700 parts per million by 2100 (this is roughly double the pre-industrial level). The changes are shown as the difference between two 20-year averages (2020-2040 minus 1980-1999). Shading indicates areas of high inter-model agreement. These results are based on simulations from nine different climate models from the IPCC AR4 multi-model ensemble. The simulations were created on supercomputers at research centers in France, Japan, Russia, and the United States. Adapted by Lawrence Buja and Julie Arblaster from Tebaldi et al. 2006: *Climatic Change*, Going to the extremes; An intercomparison of model-simulated historical and future changes in extreme events, *Climatic Change*, 79:185-211.

Table 2.3. For several economically significant crops, information is provided regarding cardinal, base, and optimum temperatures (°C) for vegetative development and reproductive development, optimum temperature for vegetative biomass, optimum temperature for maximum grain yield, and failure (ceiling) temperature at which grain yield fails to zero yield. The optimum temperatures for vegetative production, reproductive (grain) yield, and failure point temperatures represent means from studies where diurnal temperature range was up to 10°C.

Сгор	Base Temp Veg	Opt Temp Veg	Base Temp Repro	Opt Temp Repro	Opt Temp Range Veg Prod	Opt Temp Range Reprod Yield	Failure Temp Reprod Yield
Maize	81	341	81	341		18-22 ²	353
Soybean	74	304	65	265	25-376	22-246	397
Wheat	08	26 ⁸	8	26 ⁸	20-309	1510	3411
Rice	812	3613	812	3312	3314	23-2613.15	35-3613
Sorghum	816	3416	816	3 17	26-3418	2517,19	3517
Cotton	4 ²⁰	37 ²⁰	4 ²⁰	28-30 ²⁰	34 ²¹	25-26 ²²	35 ²³
Peanut	1024	>3024	24	29-33 25	31-3526	20-2626,27	39 26
Bean					2328	23-2428,29	32 ²⁸
Tomato	730	2230	730	22 ³⁰		22-2530	30 31

¹Kiniry and Bonhomme (1991):, ²Muchow et al. (1990); ³Herrero and Johnson (1980); ⁴Hesketh et al. (1973); ⁵Boote et al. (1998); ⁶Boote et al. (1997); ⁷Boote et al. (2005); ⁸Hodges and Ritchie (1991); ⁹Kobza and Edwards (1987); ¹⁰Chowdury and Wardlaw (1978); ¹¹Tashiro and Wardlaw (1990); ¹²Alocilja and Ritchie (1991); ¹³Baker et al. (1995); ¹⁴Matsushima et al. (1964); ¹⁵Horie et al. (2000); ¹⁶Alagarswamy and Ritchie 1991); ¹⁷Prasad et al. (2006a); ¹⁸Maiti (1996); ¹⁹Downs (1972); ²⁰K.R. Reddy et al. (1999, 2005); ²¹V.R. Reddy et al. (1995); ²²K.R. Reddy et al. (2005); ²³K.R. Reddy et al. (1992a, 1992b); ²⁴Ong (1986); ²⁵Bolhuis and deGroot (1959); ²⁶Prasad et al. (2003); ²⁷Williams et al. (1975); ²⁸Prasad et al. (2002); ²⁹Laing et al. (1984); ³⁰Adams et al. (2001); ³¹Peat et al. (1998).

Agriculture: Impacts of Climate Change

- New studies show an increase in temperature by 1° C will decrease yields for rice (Asia, Africa) maize and soybeans (North America, Latin America) by 11-17%
- These data are empirical: this is happening now, and will continue into the future
- A decade of agricultural research wiped out

Table 2. Global area, production and yield changes for six major crops.

	Wheat	Rice	Maize	Soybean	Barley	Sorghum
2002 Area (Mha)	214	148	139	79	55	42
2002 Production (Mt yr ⁻¹)	574	578	602	181	137	54
Yield change, 1981–2002 (kg ha ⁻¹)	846	1109	1178	632	473	-80
Climate-driven yield change, 1981–2002 (kg ha ⁻¹)	-88.2	-10.5	-90.3	23.1	-144.9	-19.5
Climate-driven production change, 1981–2002 (Mt yr ⁻¹)	-18.9	-1.6	-12.5	1.8	-8.0	-0.8

