

Agriculture et Agroalimentaire Canada

Best Practices on the Prairies: Adaptations for a changing climate...

Guy P. Lafond Agriculture and Agri-Food Canada

Outline of Presentation

- Overview of the Global Soil Resource.
- Brief Climate Change Scenarios for the Canadian Prairies.
- Best Practices on the Prairies for Adaptation to Climate Change
- Going into the future 10 and 20 years from now. How do we proceed?

Global Surface Area (km²)

World 510.1 M
Land 148.9 M (29%)
Water 361.1 M (71%)

World Land Use

- Arable Land: 13.3%
 - Irrigated:20%
 - Dryland: 80%

World Fresh Water Use

- Agriculture: 70%
 Industry: 20%
 - Domestic: 10%

Global Arable Land Area (acres)

• Arable Land:

3.339 B

[Note: B=billion]

World FactBook 2009

Global Arable Land Area (per capita)

0.49 acres per person
0.20 ha per person

World FactBook 2009

Area of Selected Continents

Continent	Arable Land (% Global)	Percent of Global Population	Arable land area per capita (ac)
Asia	31.94	56.7	0.28
N. America	17.09	6.7	1.28
Africa	14.16	14.2	0.50
Europe	11.31	8.8	0.64
Eurasia	10.72	3.2	1.68
S. America	7.88	5.8	0.68
Australia	3.47	0.3	5.51
Middle East	2.40	3.0	0.40

Area of Selected Continents and Countries

Continent	Arable Land (% Global)	Percent of Global Population	Arable land area per capita (ac)
Asia	31.94	56.7	0.28
India	10.7	17.1	0.31
China	10.3	19.8	0.26

Area of Selected Continents and Countries

Continent	Arable Land (% Global)	Percent of Global Population	Arable land area per capita (ac)
Asia	31.94	56.7	0.28
India	10.7	17.1	0.31
China	10.3	19.8	0.26
North America	17.1	6.7	1.3
USA	12.2	4.5	1.3
Canada	3.1	0.5	3.1
Mexico	1.8	1.6	0.55

Continent	% of Global	% of Global		
Continent	Arable Land	Population		
Asia	31.9	56.7		
North America	<u>17.1</u>	6.7		
Africa	14.2	14.2		
41% of Arable Land 771% of Pop'n				
South America	7.9	5.8		
Australia	3.5	0.3		
Middle East	2.4	3.0		
Central America/ Carribean	0.9	1.2		
Oceania	0.2	0.2		

Overall Conclusion about the Global Arable Land Resource

• Arable land is a scarce resource

How well do we manage our soil resource?

~68% of the world's arable land is affected by some form of soil degradation.

(Source: Lal 2007)

0.3 – 0.8% of the World's Arable Land is rendered unsuitable for agriculture every year due to soil degradation

(Source: den Biggelaar et al. 2004)

84% of the soil degradation is caused by wind and water erosion.

(Source: den Biggelaar et al. 2004)

Since 1950, 15% of the earth's land area has been affected by human activity. (Source: den Biggelaar et al. 2004)

Status of Prairie Soils

Prairies soils have lost more than 40% of their original soil organic nitrogen. (Source: Soil at Risk...1984)
Urban areas consume 3.5 M acres of land in Canada, equivalent to 1/3 the amount of cultivated land in Manitoba and growing.

How important is land for food production?

<u>Estimate #1</u> 99% of food consumed by humans world wide comes from the land...

[Pimental and Pimental 2000]

Estimate #2 Global Food Consumption 91% land 9% water

[Smil 2000]

How much is 0.3-0.8% of the global arable land on a relative scale?

0.3 % is equivalent to 10.0 M acres
0.8 % is equivalent to 26.7 M acres
Manitoba has 10.3 M cultivated acres
This represents ~1.0 - 2.6 x the cultivated acres in Manitoba

It is possible for that amount of arable land to be degraded on a yearly basis?

April 2003...

The No-till Dilemma How can you have no-till with no crop residues?

Another Example Siberia, Russia

Sales Dynamics of mineral fertilizer for the period 1990-2004 and the expected sales to 2015 (in Mio. t./

Conclusion Global Perspective on Soil Resources

We must protect our soil resource at all cost.
World security rests on a secure food supply.
A secure food supply rests on proper management of our soil resource.

 Adaptation to climate change starts with focusing on the protection of the soil resource.

(Montgomery 2007 in "Dirt: The erosion of civilization.")

If 84% of soil degradation is caused by wind and water erosion, then what is the <u>SOLUTION?</u>

Solution to Wind Erosion: Surface Residues and Standing Stubble.

 Known fact since the 30'S (Smika and Unger 1986)
 Standing stubble is 4x more effective than flat lain residues at controlling wind erosion (Onstad and Voorhees 1987)

Solution to Water Erosion: Surface Residues and Standing Stubble.

Well proven and demonstrated (Mostaghimi et al. 1992)

World View on Conservation Agriculture (CA)

- FAO has endorsed conservation agriculture as the key step to meeting the long-term global demand for food and feed.
- CA is defined as a farming system that does away with regular plowing and tillage and promotes permanent soil cover and diversified crop rotations to ensure optimal soil health and productivity. (Dr Shivaji Pandey, FAO February 2009)

The concept of no-till is now mainstream and has infiltrated the policy area in many countries however we have a long way to go.

Climate Change on the Prairies Likely Scenarios Dry and variable climate with greate extremes More frequent droughts i.e increases in the AMI (annual moisture index: GDD/annual pp't More precipitation in winter and spring and less during summer Greater increases in temperature in winter and spring [Source: Sauchyn and Kulshreshtha 2008; Sauchyn 2009; Barlow 2009]

Implications of Climate Change for Crop Production on the Prairies

- Type of climate variability i.e. year to year variability
- Intra-year variability across the prairies
- Uncertainty and increased economic risks with crop production

How do we proceed with appropriate Adaptive Strategies for Crop Production?

How do we proceed with appropriate Adaptive Strategies for Crop Production?

Focus diligently on the most in portant variables and everything else shall follow Avner Mandelman, Globe and Mail Febr 27,2010

What do I see as the most important variables?

What do I see as the most important variables? • Soil, Water and Nitrogen

These three variables are the key steps to the development of Best Practices for Adaptation on the Prairies to a Changing Climate.

Is there hope for the development of Adaptive Strategies to Climate Change?

Best Practices for a Changing Climate

• **Practice #1:** Need to protect soils from wind and water erosion using Conservation Agriculture Practices

Question?

If the Annual Moisture Index increases over time, can we compensate by being more efficient with the water we have?

Innovative Stubble Management Practices

Cultivated Stubble

15cm

Short Stubble

30 cm

Tall Stubble

Stubble Effects: Spring wheat

Treatments	Water Use	Grain Yield	WUE	
	mm	kg/ha	Kg/ha/mm	
Cultivated	309			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Short	314			
Tall	309			the survey
Significance	ns			A CARLER

Cutforth et al. 1997. Can. J. Plant Sci. 77:359-366

Stubble Effects: Spring wheat

Treatments	Water Use	Grain Yield	WUE	
	mm	kg/ha	Kg/ha/mm	
Cultivated	309	2255b (100)		
Short	314	2418ab (107)		Sand Road
Tall	309	2560a (114)		ALL ST
Significance	ns	*		A STATE

Cutforth et al. 1997. Can. J. Plant Sci. 77:359-366

Stubble Effects: Spring wheat

Treatments	Water Use	Grain Yield	WUE
	mm	kg/ha	Kg/ha/mm
Cultivated	309	2255b (100)	7.5b (100)
Short	314	2418ab (107)	7.9ab (105)
Tall	309	2560a (114)	8.4a (112)
Significance	ns	*	*

Cutforth et al. 1997. Can. J. Plant Sci. 77:359-366

Stubble Effects: Field Pea, Lentil,

Chickpea					
Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm		
Cultivated	246				
Short	242				
Tall	240				
Significance	ns				

Cutforth et al. 2002. Can. J. Plant Sci. 82:681-686

Stubble Effects: Field Pea, Lentil,

Chickpea

Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	246	1782 (100)	
Short	242	1858 (104)	
Tall	240	2008 (113)	
Significance	ns	*	

Cutforth and McConkey...

Stubble Effects: Field Pea, Lentil,

Chickpea

Treatment	Water Use	Grain Yield	WUE
	mm	kg/ha	Kg/ha/mm
Cultivated	246	1782 (100)	7.49 (100)
Short	242	1858 (104)	8.06 (108)
Tall	240	2008 (113)	8.70 (116)
Significance	ns	*	*

Cutforth and McConkey...

Carlos and a start		All a series and a series of the series of t	A Charles and the second
Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	275		
Short	271		
Tall	274		
Significance	ns		

Stubble Effects: Canola

Cutforth et al. 2006. Can. J. Plant Sci. 86:99-107
A SHORE AND A SHORE AND A		All and a second se	Mar Aller Street
Treatment	Water Use mm	Grain Yield kg/ha	WUE Kg/ha/mm
Cultivated	275	1239 (100)	
Short	271	1354 (109)	
Tall	274	1445 (117)	
Significance	ns	*	

Stubble Effects: Canola

Cutforth et al. 2006. Can. J. Plant Sci. 86:99-107

Stubble Effects: Canola

Treatment	Water Use	Grain Yield	WUE	
	mm	kg/ha	Kg/ha/mm	
Cultivated	275	1239 (100)	4.51 (100)	
Short	271	1354 (109)	4.85 (108)	
Tall	274	1445 (117)	5.03 (112)	
Significance	ns	*	*	

Cutforth et al. 2006. Can. J. Plant Sci. 86:99-107

Stubble Effects: Canola

Treatment	Water Use	Grain Yield	WUE Ka/ha/mm
	111111	kg/lla	Kg/IIa/IIIII
Tall	274	1445 (117)	5.0 (112)
Tall + extra fertilizer	286	1680 (135)	5.8 (129)
Cutforth	et al. 2006. Ca <u>n. J.</u>	Plant Sci. 86:99-10	A STATE AND A PAGE

We now know that tall stubble will enhance water use efficiency.

Opens up Greater Opportunities for different harvest management techniques eg, Stripper Headers

Proper incorporation of stripper header in a cropping systems is dependent on being able to seed between the rows.

Added benefit of Stripper Headers: Reduction in fuel consumption i.e 40-50% reduction.

How difficult is it to seed between the rows?

Eg. Seeding into Barley Stubble Harvested with a Stripper Header Stubble Rows 9" Spacing Seeder 9" Spacing

This is what happens when you leave the inter-row area

What is needed for implementation?

We need some engineering and agronomic solutions to allow for ease of seeding between the rows.

Part of the solution is widening the distance between crop rows for greater ease of seeding.

New Study Row Spacing and Fertilizer Nitrogen in Oat - 2009

" (25.4 cm) **spacing**

" (30.5 cm) **spacing**

14" (35.6 cm) Spacing

" (40.6 cm) **Spacing**

Treatments

- Row Spacing 10", 12", 14" 16"
 Nitrogen Rates -20, 40, 60, 80 and 120 kg N/ha
 Urea is the N source
- Also added 143 kg/ha of 14-20-10-10

Oat 2009 10" Spacing 72 lbs N/acre

Oat 2009 12" Spacing 72 lbs N/acre

Oat 2009 14" Spacing 72 Ibs N/acre

Oat 2009 16" Spacing 72 Ibs N/acre

16" 80 kg N /ha (71 lbs N/acre)

Row Spacing	Grain Yield (bus/ac)	Grain Yield (kg/ha)	1 TI K
···· 10"			A SA
12"			
14"			
16"			and the set
Level Sign			

All N

10.00

Row Spacing	Grain Yield (bus/ac)	Grain Yield (kg/ha)
*** 10"	154	5935
12"	154	5913
14"	163	6268
16"	155	5963
Level Sign	Ns	Ns

	Row	Fertilizer Rates (kg/ha)					
CITAL AND	Spacing	20	40	60	80	120	
All Market	10"						
	12"						
20 MANUT	14"	the second secon					
	16"						
A MC AN							

Row	Fertilizer Rates (kg/ha)				
Spacing	20 40 60 80	120			
10"	130				
12"	135				
14"	143				
16"	145				

Row	Fertilizer Rates (kg/ha)				
Spacing	20 40 60 80 120				
10"	130 148				
12"	135 151				
14"	143 151				
16"	145 153				

Row	Fertilizer Rates (kg/ha)				
Spacing	20	40	60	80	120
10"	130	148	158		
12"	135	151	161		
14"	143	151	170		
16"	145	153	155		

Row	Fertilizer Rates (kg/ha)				
Spacing	20	40	60	80	120
10"	130	148	158	165	
12"	135	151	161	157	
14."	143	151	170	168	
16"	145	153	155	166	

Row	Fertilizer Rates (kg/ha)					
Spacing	20	40	60	80	120	
1.0"	130	148	158	165	169	
12"	135	151	161	157	166	
14"	143	151	170	168	183	
16"	145	153	155	166	155	

If the results carry through in other years and for other crops, we have another part to the solution of seeding between stubble rows to enhance water use efficiency.

> 16" 80 kg N /ha (71 lbs N/acre)
PRACTICE #2 Enhanced Stubble Management Practices

Extra Nitrogen (EN) vs Recommended Rate (FP)

	Results	Grain Yield	G.
	- Land Contraction	% of time	
JAR	EN=FP		5
1200	Star A		
	EN>FP		E CA
		1 2 2 1	
0- 0-	A AND AND		
	All in the Back		

Extra Nitrogen (EN) vs Recommended Rate (FP)

	Results	Grain Yield	a
	Langer C. 194	% of time	
18	EN=FP	78	0
	A A A		J.
	EN>FP	22	
27 8			

Recommended (FP) vs 66%FP (RR)

Results	Grain Yield	
FP=RR	i Allico	
FP>RR		

Recommended (FP) vs 66%FP

65%
0-0/
35%

Conclusions

22% of trials under fertilizing with N
65% of trials over fertilizing with N
13% of trials adequate rate of N was used

How can we accomplish this?

Optical Sensors and Real-Time Applications of N

Trials with Optical Sensor at a Field Scale

Commercial Application Equipment

On-Farm Trials – Treatments

N applied (%	recommended)
--------------	--------------

Treatment	Seeding	Post- emergent
Farmer Practice	100%	0%
VRA w/ Optical Sensor	66%	VRA?
N-Rich	150%	0%

On-Farm Trials – Treatments

N applied (% recommended)

Treatment	Seeding	Post- emergent
Farmer Practice	100%	0%
VRA w/ Optical Sensor	66%	VRA

Summary – Canola

9 canola field trials in total
N applied w/OS 6% < than FP(+14 to -18%)

Grain Yield: FP=OS 7 of 9 years
Grain Yield: FP<OS 2 of 9 years

	Locations / Years				
	BA05	NH05	VS05	BA06	KS06
Treatment		Total N	N Applied	(lb/ac)	
Farmer Practice	75	90	109	75	70
VRA/GreenSeeker	69	81	85	68	80
	Grain Yield (bus/ac)				
Farmer Practice					
VRA/GreenSeeker					

	Locations / Years				
	BA05	NH05	VS05	BA06	KS06
Treatment	Total N Applied (lb/ac)				
Farmer Practice	75	90	109	75	70
VRA/GreenSeeker	69	81	85	68	80
	Grain Yield (bus/ac)				
Farmer Practice	38b	56 a	30c	36ab	35b
VRA/GreenSeeker	42a	54 a	33b	33b	34b

			10.00	and the second state where the second	
	Locations / Years				
	RE06	RP06	VJ06	KS07	
Treatment		Total N App	olied (lb/ac)		
Farmer Practice	75	127	90	67	
VRA/GreenSeeker	77	108	95	57	
	Grain Yield (bus/ac)				
Farmer Practice					
VRA/GreenSeeker					
AN		and the second			
Con Barriella	MALL SHE	15 E. 25			

			and the second	the second se	and the second		
		Locations / Years					
		RE06 RP06 VJ06 KS07					
Tre	eatment	Total N Applied (lb/ac)					
Far	mer Practice	75	127	90	67		
VR	A/GreenSeeker	77	108	95	57		
		Grain Yield (bus/ac)					
Far	mer Practice	50 a	37 a	41 a	34b		
VR	A/GreenSeeker	50 a	37 a	42 a	36ab		

Optical Sensors and Real-Time Application in a Changing Climate

- Accounts for temporal variability
- Accounts for spatial variability
- Represents a good N management risk tool
- This is one example of how to address variable climatic conditions with respect to risk management for nitrogen

PRACTICE #3: Best Approaches to Nitrogen Management: Right Form, Right Place, Right Time, Right Rate

How do we build "resiliency" into our production systems to address climate change?

"Resiliency" is possible if you have healthy soils.

How do we manage for "healthy & resilient" soils?

Long-Term Benefits of No-Till

Long-Term No-Till

Native Prairie

Plot Areas

Field Boundary

Soil Organic Matter in 2003 % (0-15 cm)

	Native	Long-term	Short- term
Organic C t/ha			
Organic N kg/ha			

Soil Organic Matter in 2003 % (0-15 cm)

	Native	Long-term	Short-term
Organic C t/ha	5.1	3.9	2.9
Organic N kg/ha			

Soil Organic Matter in 2003 % (0-15 cm)

	Native	Long-term	Short-term
Organic C t/ha	5.1	3.9	2.9
Organic N kg/ha	5140	4610	3700

Study Description

(1 rate)	(1 rate)
V	V
E V	V
1	~
	\checkmark
~	\checkmark

Spring Wheat (2002) – Grain Yield

Spring Wheat (2006) – Grain Yield

Spring Wheat (2008) – Grain Yield

Spring Wheat (2002) – Grain Protein

Spring Wheat (2006) – Grain Protein

Spring Wheat (2008) – Grain Protein

Nitrogen Balance – Long-term vs Short-Term No-till after 8 years

N Rate (kg/ha)	Total N applied (8 years)		Total N removed with grain (kg/		Nitrogen Balance (kg/ ha)		
	(kg	/ha)	a) ha) (applied N – N in		N in grain)		
	Long- term	Short- term	Long- term	Short- term	Long-term	Short- term	
0							
30						_	
60	-		4				
90							
120							

Nitrogen Balance – Long-term vs Short-Term No-till

N Rate (kg/ha)	Total N applied (8 years) (kg/ha)		Total N removed with grain (kg/ha)		Nitrogen Balance (kg/ha) (applied N – N in grain)		5
	Long- term	Short- term	Long- term	Short- term	Long-term	Short- term	
0	0	0					
30	240	240		5	Tea		
60	480	480					
90	720	720					
120	960	960					

Nitrogen Balance – Long-term vs Short-Term No-till

N Rate (kg/ha)	Total N applied (5 years) (kg/ha)		Total N removed with grain (kg/ha)		Nitrogen Balance (kg/ha) (applied N – N in grain)		
	Long- term	Short- term	Long- term	Short- term	Long-term	Short- term	
0	0	0	270	181			
30	240	240	342	244	ta		
60	480	480	465	349			
90	720	720	756	491			
120	960	960	634	550			

Nitrogen Balance – Long-term vs Short-Term No-till

	N Rate (kg/ha)	Total N applied (8 years) (kg/ha)		Total N removed with grain (kg/ ha) (8 years)		Nitrogen Balance (kg/ ha) (applied N – N in grain) After 8 Years	
		Long- term	Short- term	Long- term	Short- term	Long-term	Short- term
	0	0	0	270	181	-270	-181
1	30	240	240	342	244	-102	-4
	60	480	480	465	349	15	131
	90	720	720	756	491	144	229
	120	960	960	634	550	327	410

Residual NO3-N levels after 8 years

	NO3-N (kg/ha)			
N Rate (kg/ha	Long-Term	Short-Term		
0				
60				
60				
90				
120				

Residual NO3-N levels after 8 years

	NO3-N (kg/ha)			
N Rate (kg/ha	Long-Term	Short-Term		
0	8	7		
60	9	11		
60	11	11		
90	6	11		
120	21	28		

Note: Spring Wheat (2008) – Grain Yield

Conclusions from Study

- Soils don't degrade in one year and so we should not expect rapid improvements with crop inputs like N fertilizers after one year.
- No-till combined with proper fertility will result in significant improvements in soil productivity over time.
- Nitrogen fertilizers or other organic N amendments are a requirement to improve degraded soils.
- The time required will depend on the level of soil degradation.
- Conservation Agriculture will build resiliency in the soil systems over time.

PRACTICE #4: Continuous cropping combined with no-till and proper fertility management will ensure that soil resource is protected and improved over time.

What about Pest Management?

- Effects of weather > crop rotations
 > tillage systems when it comes to
 permanent shifts in weed
 populations.
- Populations shifts are slow allowing for time to adapt.
- Same principle applies to plant diseases.
- A more variable climate in the future may work in our favor by reducing directional shifts.

Climate Change on the Prairies...Best case scenarios Recap...

- Dry and variable climate with greate extremes
- More precipitation in winter and spring and less during summer
 Greater increases in temperature in winter and spring

Source: Sauchyn and Kulshreshtha 2008; Sauchyn 2009; Barlow 2009]

What do we need to do in the next 10 years?

- Maintain on-going awareness on the state of the global soil resource.
- Continued global focus on the adoption of Conservation Agriculture.
- Refine Stubble Management Systems for water conservation
- Refine our approaches to N Management (temporal and spatial variability)
- Address the issue of weed resistance to herbicides.
- Initiate research into ways to reduce pesticide loading in the environment to extend the life of these technologies.
- More research on winter crops due to warmer winters and more spring and winter precipitation.

What do we need to do in the next 10 years cont'd?

- Remote sensing applications for measuring soil moisture across landscapes
- Focus on maintaining diversified cropping systems
- Merits of Controlled Traffic
- Development of real-time Decision Support Systems for Pest Management with intricate regional monitoring systems
- Recycle human and animal wastes eg. struvite
- Maintain focus on Energy efficiency and carbon footprint

What do we need to do in the next 20 years?

- Better climate predictive models to help farmers manage risk
- Development of more *in-situ* sensors combined with robotic applications to do field monitoring
- Non-renewable energy conservation and lower carbon footprint from crop production
- Continued evolution of cropping systems and crop diversification

How do we move in the near future?

- Need to sustain interest by funding agencies over longer time frames
 Need to find strong individuals that can champion and create continued awareness about soil, food production, energy etc.
- Need to communicate soil and crop production sciences more effectively to the general public

Home | About Us | CCA Information | Journal Articles | Crops Glossary | Soils Glossary | Sign In | Register | Print This Page

Prairie Soils and Crops: Scientific Perspectives for Innovative Management An Online Journal

www.prairiesoilsandcrops.ca

Welcome to the Prairie Soils and Crops eJournal

Prairie Soils & Crops: Scientific Perspectives for Innovative Management, is a "peer reviewed" eJournal that provides agricultural producers, agrologists and crop advisors with current perspectives on various issues facing Prairie agriculture. New issues of this annual publication are released every March.

Issue 2 - Weeds, Herbicides and Management is now available.

In order to access these articles, you will have to register as a subscriber. Abstracts for the articles in will appear on this website but in order to access the articles, you will have to enter your access code - available only to **paid subscribers and SSCA members**. An annual subscription is \$15. For information on SSCA memberships, go to **www.ssca.ca**.

Jesue 1 Agriculture and Its Impact on the Environment can be accessed for free. However, you will need to create a user account

prairie certified crop adviser board Earn Continuing Education

How do we move into the near future cont'd?

- Need more international forums with major stakeholders like this one for the exchange of ideas
- Need to get the funding agencies on board
- Need producers to be more effective at articulating their farm-gate needs with respect to technology and risk management

This is not an impossible assignment. We are already part way there. We need to maintain focus on the problem.

Thank-you

Brain Teaser!!!

Why do elks have long

19-13

